Brimonidine Blocks Glutamate Excitotoxicity-Induced Oxidative Stress and Preserves Mitochondrial Transcription Factor A in Ischemic Retinal Injury

نویسندگان

  • Dongwook Lee
  • Keun-Young Kim
  • You Hyun Noh
  • Stephen Chai
  • James D. Lindsey
  • Mark H. Ellisman
  • Robert N. Weinreb
  • Won-Kyu Ju
چکیده

Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam) and oxidative phosphorylation (OXPHOS) complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day) or vehicle (0.9% saline) systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12-72 hours), Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our findings suggest that systemic BMD treatment protects RGCs by blockade of glutamate excitotoxicity-induced oxidative stress and subsequent preservation of Tfam/OXPHOS complex expression in ischemic retina.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia.

Recent studies have suggested that alpha(2)-adrenergic agonists prevent neuronal cell death in a number of animal models, although the mechanism of alpha(2)-neuroprotection remains unclear. In a retinal ischemia model, the alpha(2)-specific agonist brimonidine (1 mg/kg i.p.) preserves approximately 80% of the electroretinogram (ERG) b-wave. The protective effect of brimonidine is completely blo...

متن کامل

Brimonidine is neuroprotective against glutamate-induced neurotoxicity, oxidative stress, and hypoxia in purified rat retinal ganglion cells

PURPOSE To investigate the neuroprotective effect of alpha2-adrenergic agonist brimonidine in the presence of glutamate-induced neurotoxicity, oxidative stress, and hypoxia on in vitro cultures of purified rat retinal ganglion cells (RGCs). METHODS Purified RGC cultures were obtained from retinas of 6-8-day old Wistar rats, following a two-step immunopanning procedure. After 72 h of cultivati...

متن کامل

The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage

Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected si...

متن کامل

Cellular and Molecular Mechanisms of Retinal Ganglion Cell Death in Hypoxic-Ischemic Injuries

Loss of retinal ganglion cells (RGCs) occurs in retinal degenerative diseases, such as glaucoma, age-related macular degeneration, diabetic retinopathy, central retinal artery occlusion and ischemic central retinal vein thrombosis in adults and in retinopathy of prematurity in infants. A critical role of hypoxia, which underlies most of the above disorders, has been reported in causing RGC deat...

متن کامل

Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress.

Developing oligodendrocytes (OLs) are highly vulnerable to excitotoxicity and oxidative stress, both of which are important in the pathogenesis of many brain disorders. OL excitotoxicity is mediated by ionotropic glutamate receptors (iGluRs) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate type on these cells. Here we report that metabotropic GluRs (mGluRs) are highly exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012